中学数学高校数学個別指導塾 in 山形市|数専ゼミ |
中学数学高校数学個別指導塾in山形市|数専ゼミ
|
山形県公立高校入試出題問題分析表 |
兵法(受験勉強法)の大原則−敵(出題傾向)を知ること! |
直近5年間の「1次関数」の出題です。 【注】 配点 100点満点,時間 50分 難易度 A:教科書の基本レベル,B:教科書で最も難しいレベル,C:教科書を超えるレベル,D:50分では解けないだろうと思えるレベル 平成25年度 配点20点 出題ジャンル:速さ(ダイヤグラム),難易度D 平成26年度 配点15点 出題ジャンル:動点と面積(重なる部分の面積),難易度C 平成27年度 配点17点 出題ジャンル:動点と体積(立体と平面の混合),難易度C 平成28年度 配点23点 出題ジャンル:速さ(追いかける問題),難易度D 平成29年度 配点20点 出題ジャンル:動点と面積(重なる部分の面積),難易度C 超重要ジャンルである「水量変化」の問題の出題がないことに気づきましたか。 ちなみに,「水量変化」の出題は,平成15年,18年,21年度で,最近8年間は出題されていません。 なぜ,このようなことがわかるのか。 それは,このようなデータを引き出すことのできる「出題問題分析表」を見ているからです。 すると,「1次関数」の受験対策は (1) 「水量変化」の問題は,まず平成15,18,21年度の問題を解けるようにし, このレベルのいろいろなタイプの問題を解けるようしておくこと (2) 引き続き,速さと動点問題の過去問は解けるようにしておき,このレベルの問題を多くこなしておくこと (3) 入試問題が解けないときは,教科書レベルの基礎から学び直しておくこと であることがわかります。 こういうのを「合格を確実にする科学的学習法」といいます。 こうした科学的学習法を可能にするのが「出題問題分析表」です。 これを見ることで,合格するには,何をどの範囲でどのレベルまで学習しておけばよいかがわかります。 (入試数学では,80点を取れば,東高,西高,南高のどの高校でも合格できます。) このような合格できる学習法の土台となるデータ「出題問題分析表」(45年間の全出題を分析)を, 数学で,絶対に勝たなければならない人に無料で提供します。 (A4判カラー印刷7枚+何題かの出題問題を学習するための教材を郵送しますが,資料代,郵送代は必要はありません。) 「出題問題分析表」の一部分を紹介します。→|山形県公立高校入試出題問題分析表(数学1年)| |
中学数学高校数学個別指導塾 in 山形市|数専ゼミ |