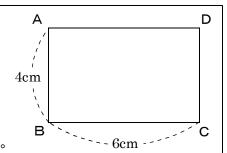
3 1

1次関数 3・1次関数の利用

2 動点と面積の問題(その1)

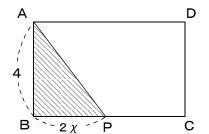

(1/7) ■ 平面図形の周上を動く点 ■

長方形の周上を動く点

- ─ ●★解法の技術★の学習のしかた●・
- (1) 下の答案を理解し、「考え方」を覚えましょう。/覚えたら、.....
- (2) 模範解答を見ないで、「理解のチェック」の問題を解いてみましょう。 (答案を見ながら書くと勉強になりません。一度、「考え方」を頭の中に入れることが大切です。)

- ★解法の技術★ -

右のような長方形があります。点 P が毎秒 2 cm の速さで点 B を出発して辺上を C, D, A まで動きます。点 B を出発して χ 秒後の Δ A B P の面積を y cm²とするとき、次の問いに答えなさい。


- (1) χ と γ の関係をグラフで示しなさい。
- (2) △ABPの面積が6cm²となるのは、点Bを出発してから何秒後ですか。

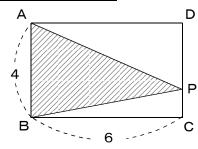
【考え方】次の3つの区間に分けて、それぞれの場合について、 $\triangle A B P O$ 面積 y を、 χ を使って表します。

三角形の面積(y)=底辺×高さ÷2

[答案]

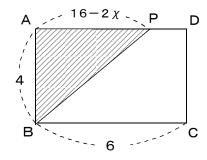
(1) ・0 ≤ χ ≤ 3 のとき

 $y = 2 \chi \times 4 \div 2 = 4 \chi$ \$\mathcal{y}, $y = 4 \chi$ \cdots(1) **◀** PがBC上


- ▲△ABPの面積を求める式
- ◀ 1次関数の式

(次のページへつづく) ✓

□ □ 【1次関数 No. 3 1 (1/7)】 - (2枚目/3枚)


╱ (前のページからのつづき)

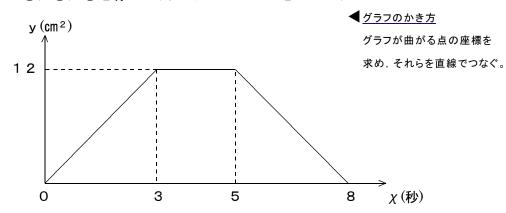
3 ≤ x ≤ 5のとき

 $y = 4 \times 6 \div 2 = 1 \ 2 \quad \text{\sharp \flat},$ $y = 1 \ 2 \quad \cdots \ 2$

5 ≤ x ≤ 8 のとき

▼PがCD上

✓ PがCD上にあるときは△ABPの面積は変わらない。=yの値は定数


- ▲△ABPの面積を求める式
- ◀1次関数の式
- **●**PがDA上
- ■PA=BC+CD+DA-BCDP =6+4+6+-2 χ=16-2 χ

 $y = 4 \times (16 - 2 \chi) \div 2 = 32 - 4 \chi \quad \text{\sharp \emptyset},$ $y = -4 \chi + 32 \quad \cdots \text{\Im}$

▲ △ABPの面積

◀1次関数の式

①、②、③を χ の区間に分けてグラフをかくと、

(次のページへつづく) /

□ □ 【 1次関数 No. 3 1 (1/7)】 - (3枚目/3枚)

╱ (前のページからのつづき)

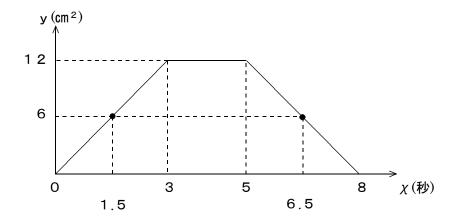
(2) (1) のグラフより、 $\triangle ABP(y) = 6$ となるのは、 \blacktriangleleft (1) のグラフのy=6(i) $0 \le \chi \le 3$ のときで、

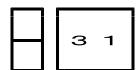
の点線とグラフとの交点

①に y = 6を代入して,

下記【注】を参照。

 $6 = 4 \chi$ より、 $\chi = 1.5$


(ii) $5 \le \chi \le 8$ のときで、

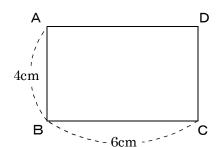

③cy = 6を代入して,

 $6 = -4 \chi + 3 2$ より、 $\chi = 6.5$

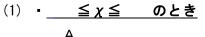
答 Bを出発して 1.5 秒後と 6.5 秒後

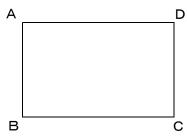
【注】

2 動点と面積の問題(その1)

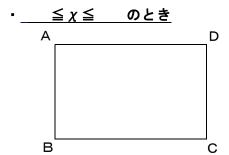

(2/7) ■ 平面図形の周上を動く点 ■

◇《長方形の周上を動く点》 学力化 →


----- ★理解のチェック★ -------------

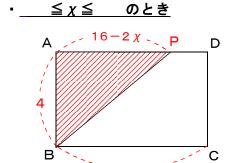

右のような長方形があります。点Pが毎秒 2 cmの速さで点Bを出発して辺上を C, D, A まで動きます。点Bを出発して χ 秒後の Δ A B P の面積を y cm² とするとき、次の問いに答えなさい。

- (1) χ とyの関係をグラフで示しなさい。
- (2) **△** A B P の面積が 6 cm² となるのは, 点 B を出発してから何秒後ですか。



[答案]

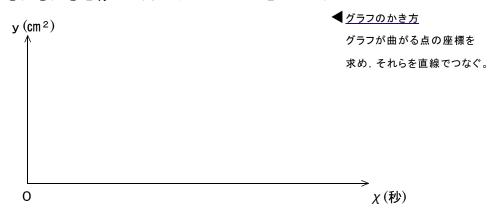
y = ____より, v = …①



y = ____より, v = …② **▼**PがBC上

- ▲△ABPの面積を求める式
- ◀1次関数の式
- **▼**PがCD上
- ▼PがCD上にあるときは△ABPの面積は変わらない。=yの値は定数
- △ABPの面積を求める式
- ■1次関数の式 (次のページへつづく) /

□ □ 【 1次関数 No. 3 1 (1/7)】 - (2枚目/2枚)


╱ (前のページからのつづき)

▼PがDA上

 $\blacktriangleleft PA = BC + CD + DA - BCDP$ $= 6 + 4 + 6 + -2 \chi$ $= 16 - 2 \chi$

①、②、③を χ の区間に分けてグラフをかくと、

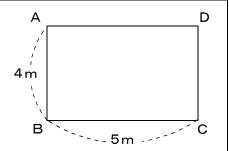


(2) (1) のグラフより、△ABP(y)=6となるのは、 (1) のグラフのy=6 の点線とグラフとの交点
(i) ≦ χ ≦ のときで、 の点線とグラフとの交点
(式) : 下記[注]を参照。

(ii) $\leq \chi \leq$ のときで、

(式):

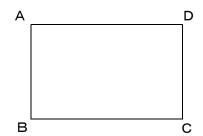
答 Bを出発して


2 動点と面積の問題(その1)

(3/7) ■ 平面図形の周上を動く点 ■

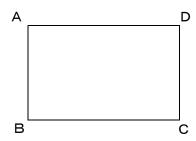
◇《長方形の周上を動く点》 学力化 → / ・

-★演習★【1】 -----


右の図のような長方形の周上を点 P が B から出発して、 B \rightarrow C \rightarrow D \rightarrow A の 順に動くとします。点 P が B から進ん だ道のりを χ m とし、 Δ A B P の面積 を γ m²とするとき、次の問いに答えな さい。

- (1) 次の場合に分けて、 χ とyの関係を表す式をかきなさい。
 - PがBC上にあるとき
 - PがCD上にあるとき
 - PがDA上にあるとき
- (2) χ と γ の関係をグラフに表しなさい。

[答案]

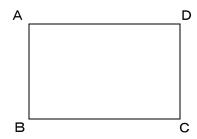

(1) • PがBC上にあるとき ($\leq \chi \leq$)

▲△ABPの面積を求める式

y = ···① ◀ 1次関数の式

PがCD上にあるとき (≦ χ ≦)

▲△ABPの面積を求める式


y = _____ **一** 2 **■** 1次関数の式

(次のページへつづく) 🦯

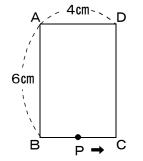
□ □ 【 1次関数 No. 3 1 (3/7)】 - 〈2枚目/2枚〉

╱ (前のページからのつづき)


<u>点 P が D A 上 に あるとき</u> (≦ χ ≦)

▲1次関数の式

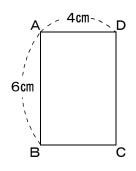
①、②、③を χ の区間に分けてグラフをかくと、


2 動点と面積の問題(その1)

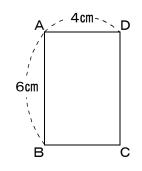
(4/7) ■ 平面図形の周上を動く点 ■

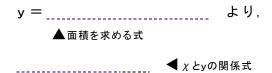
◇《長方形の周上を動く点》 学力化 → / ・

-★演習★【2】 ———


長方形ABCDで、AB=6cm、AD=4cmです。点Pが、Bから出発して辺BC上をCまで動き、Cで折り返し、再び辺BC上をBまで動くとき、点Pの動いた長さを χ cm、 Δ ABPの面積を χ cm²として次の問いに答えなさい。

- (1) χ と γ の関係を、次の 2 つの場合について考え、式で表しなさい。
 - $T. 0 \le \chi \le 4$ のとき
 - イ. $4 \le \chi \le 8$ のとき
- (2) $\triangle ABP$ の面積が 9 cm²となるときの χ の値をすべて求めなさい。
- *図を完成して、答えなさい。


「答案]


(1) P. 0 ≤ χ ≤ 4 O ≥ δ

(2) 《求め方》

イ. 4≦*χ*≦8 のとき

答 []

3	1

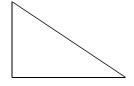
2 動点と面積の問題(その1)

(5/7) ■ 平面図形の周上を動く点 ■

三角形の周上を動く点

◇《三角形の周上を動く点》 学力化 → / ,

- ★演習★【3】 -----

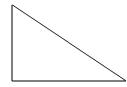

 $AB=6 \, cm$, $AC=4 \, cm$, $\angle A=90^\circ$ の $\triangle ABC$ があります。いま, 点 P は頂点 B から A を通り, C まで辺上を動きます。点 P が B から動いた 道のりを χ cm, そのときできる \triangle PBC の面積を γ cm² とするとき, γ を χ を用いた式で表し、そのグラフをかきなさい。

*図を完成して、答えなさい。

[答 案]

≦ χ ≦ のとき,

◀PがBA上

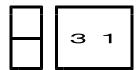

┫面積を求める式

y = _____ ···①

◀1次関数の式

≦ x ≦ のとき,

◀PがAC上



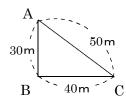
y =

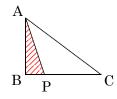
···② **■**1次関数の式

①,② e_{χ} の区間に分けてグラフをかくと、

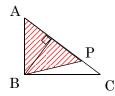
1 次関数 3 · 1 次関数の利用

2 動点と面積の問題(その1)


(6/7) ■ 平面図形の周上を動く点 ■


◇《三角形の周上を動く点》 学力化 → / ・

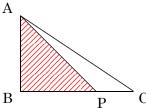
- ★演習★【4】 ------


下の図のような直角三角形ABCの土地があります。P君がこの三角形 の周上をBから歩き始めてCに行き、次にAまで行くことにします。この とき、P君がBから歩いた距離を χ m、 Δ ABPの面積を χ m²とすると き. 次の問いに答えなさい。

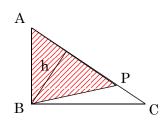
- (1) P君がそれぞれBC、CA上にいるときに分けて、vをvの式で表し なさい。
- (2) $y \geq \chi$ の関係をグラフに表しなさい。

y = _____

*図を完成して、答えなさい。


[答案]

BC上にいるとき (≦ x ≦)

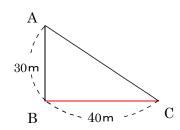

●面積を求める式

y = ...①

◀1次関数の式

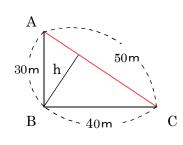
CA上にいるとき (≦ χ ≦)

△ A B P の高さ= [] m (求め方は次のページ) ▲面積を求める式


y = _____ **一** 1次関数の式

(次のページへつづく) /

□ □ 【 1次関数 No. 3 1 (6/7)】 - 〈2枚目/2枚〉


╱ (前のページからのつづき)

* 【 △ A B P の高さの求め方】

BCを底辺としたときの \triangle ABCの面積を求めます。

$$\triangle$$
 A B C = _____ = [] m² ····①

ACを底辺としたときの△ABCの面積を 求めます。このときの高さは頂点Bから底辺 ACにおろした垂線の長さになります。

この垂線の長さをhとおき、△ABCの面積をhを使った式で表します。


$$\triangle$$
 A B C = ______ = [] m² ····②

①=②だから、hについての方程式を作り、これを解いてhの値を求めます。

(求め方)

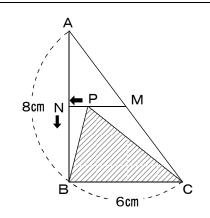
(2) ①, ② e_{χ} の区間に分けてグラフをかくと,

1 次関数 3 · 1 次関数の利用

2 動点と面積の問題(その1)

(7/7) ■ 平面図形の周上を動く点 ■

台形の周上を動く点


◇《台形の周上を動く点》 学力化 → /

- ★演習★【 5 】 -----

右の図のように、直角をはさむ2辺の長さが6cm、8cmの直角三角形ABCがあります。

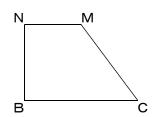
A Cの中点Mから、B C に平行な直線をひき、A B との交点をN します。Mを出発して、 矢印の方向にNを通りB にいたるまで、毎秒 1 cmの速さで動く点Pがあります。

このことについて、次の問いに答えなさい。

- (3) (2)のグラフで、 χ の範囲が $3 \le \times \le 7$ のとき、 χ と χ の関係を式で表しなさい。

【考え方】まだ学習していない考え方を使います。

次の図形の性質を使って下さい。


「三角形ABCの辺AC上の中点Mを通って底辺BCに平行にひいた線分MNは、底辺BCの長さの半分であり、辺ABを二等分する。」つまり、MN=3cm、NはABの中点となる、という意味です。

(これは、「中点連結定理」といって、3年生の相似の単元で学習します。)

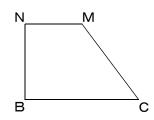
*図を完成して、答えなさい。

[答案]

(1)

ΔPBC=____

答 [] cm²

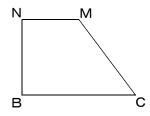

(次のページへつづく) /

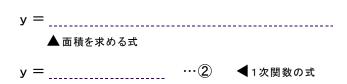
□ □ 【 1次関数 No. 3 1 (7/7)】 - 〈2枚目/2枚〉

╱ (前のページからのつづき)

(2) • $\leq \chi \leq$ のとき,

●PがMN上





■面積を求める式■1次関数の式

◀PがNB上

(3) (2) の③より,

y = ____