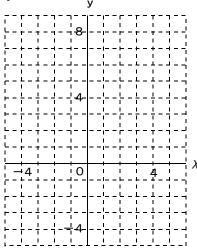
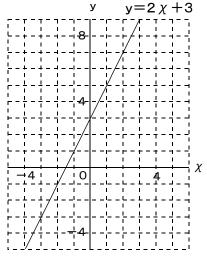
1.0	1次関数 1・1次関数とグラフ 5 1次関数のグラフ(その1) (1 ∕ 6) ■ 1次関数のグラフの特徴 ■
. 0	(1 / 6) ■ 1 次関数のグラフの特徴 ■

1次関数のグラフの特徴


- ★知識の整理★ -


1次関数 $y = 2\chi + 3$ をグラフに表すことを考えてみましょう。

(1) 1次関数 $y = 2\chi + 3$ について、次の表を完成しなさい。

χ	- 2	– 1	0	1	2	3	4
У							

(2) 下の左の図に、上の χ 、 χ の値の組を座標とする点を書き入れてみましょう。

上の表をくわしくし、もっと多くの点をとっていくと、グラフは上の右の図のような直線になります。この直線は、 $y = 2\chi + 3$ が成り立つような χ 、yの値の組(χ 、y)を座標とする<u>点の集まり</u>です。

(3) 次の点は、それぞれ 1 次関数 $y = 2 \chi + 3$ のグラフ上の点です。 [] にあてはまる数を求めてみましょう。

①A (6, ____),

②B (-5, ____),

③C(____, 17)

④ D (_____, −11)

1 0

1 次関数 1・1次関数とグラフ

5 1次関数のグラフ(その1)

(2 / 6) ■ 1次関数のグラフの特徴 ■

- ★知識の整理★ ―

次に、下の2つの1次関数のグラフを比べてみましょう。

$$y = 2 \chi \cdots (1)$$

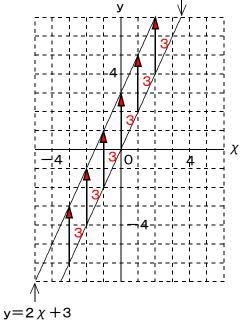
$$y = 2 \chi + 3 \cdots (2)$$

上の1次関数(1), (2)について,次の表を完成しましょう。

Χ	- 2	– 1	0	1	2	3	4
(1) 2 χ							
(2) 2 χ + 3							
(2) - (1)							

(1) ξ (2) の式を比べてみると、 χ のどの値についても、それに対応する(2) の ξ の値は

(1)のyの値よりも____だけ大きい。


したがって、(2)のグラフ上の各点は、 (1)のグラフ上の各点を____だけ に移動させたものになっている。

すなわち,

- $y = 2 \chi O O J D C$ C,
- ・点 を通る。

【注】座標上の点はかっこを使って表します。 (例) 原点は(0,0)

 $\chi = 1$, y=2 の点は (1, 2)

 $v=2\chi$

 $y = 2\chi + 3$ のグラフである直線を、直線 $y = 2\chi + 3$ といいます。

10

1 次関数 1・1次関数とグラフ

5 1次関数のグラフ(その1)

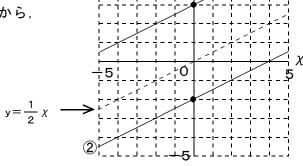
(3/6) ■ 1次関数のグラフの特徴 ■

- ★解法の技術★ ·

次の1次関数を、 $y = \frac{1}{2} \chi$ のグラフを利用してかきなさい。

①
$$y = \frac{1}{2} \chi + 3$$

②
$$y = \frac{1}{2} \chi - 2$$


[答案]

① $y = \frac{1}{2} \chi + 3 d$, $y = \frac{1}{2} \chi$ を上方に3だけ平行移動した直線だから.

1 点(0,3)を通り,

$$2$$
 $y = \frac{1}{2} \chi$ に平行な直線

をかけばよい。

- ② $y = \frac{1}{2} \chi 2 d$, $y = \frac{1}{2} \chi$ を下方 に 2 だけ平行移動した直線だから,
 - 1 点(0, -2)を通り,
 - $\mathbf{2}$ $\mathbf{y} = \frac{1}{2} \chi$ に平行な直線

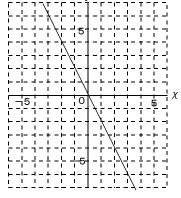
をかけばよい。

1 0	1 次関数 1 · 1 次 5 1 次関数		·の1)		
	5 1次関数 (4 ∕ 6) ■ 1次関数	関数のグラフ <i>0</i>)特徴		
◇《比例と1次関数	效のグラフ》 <mark>学カ化</mark> →	/ ,			
★理解のチェッ					
次の1次関数の	Dグラフを, $y = \frac{1}{3} \lambda$	(のグラフを和	川用して:	かきな	さい。
(1) $y = \frac{1}{3} \chi +$	⊦ 1	(2) $y = \frac{1}{3}$	- χ — 2		
[答 案]					
(1) 1次関数 y = -	$\frac{1}{3}\chi + 1$ のグラフは	,		,-5 _Т ,-	- т,-
直線 y = <u>1</u> χ	をだけ			' - ' -	
平行移動した直線	泉だから,	 		! ! +!- !	
1 点	を通り,			0	
2	な直線				
		L		_	
をかけばよい。		; !!		5	ii
(2) 1次関数 y = -	$\frac{1}{3} \chi - 2$ のグラフは	,			
直線 $y = \frac{1}{3} \chi$	をだけ				
平行移動した直線	泉だから,				
1 点	を通り,				

な直線

をかけばよい。

1 次関数 1・1 次関数とグラフ


5 1次関数のグラフ(その1)

(5/6) ■ 1次関数のグラフの特徴 ■

◇《比例と1次関数のグラフ》 学力化 → / ・

- (1) $y = -2 \chi + 3$
- (2) $y = -2 \chi 2$

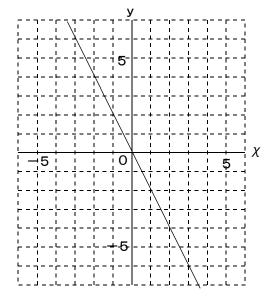
*グラフのかき方を説明し、グラフをかきなさい。

[答 案]

(1) 1次関数 $y = -2\chi + 3$ のグラフは,

1

2


をかけばよい。

(2) 1次関数 $y = -2\chi - 2\sigma$ グラフは,

1 _____

2

をかけばよい。

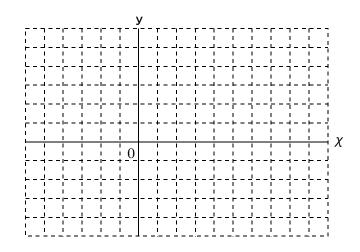
1 0

1 次関数 1・1 次関数とグラフ

5 1次関数のグラフ(その1)

(6 / 6) ■ 1次関数のグラフの特徴 ■

◇《比例と1次関数のグラフ》 学力化 → / ・


--★演習★【2】 ------

次の1次関数を、 $y = -\frac{1}{2} \chi$ のグラフを利用してかきなさい。

(1)
$$y = -\frac{1}{2}\chi + 4$$

(2)
$$y = -\frac{1}{2} \chi - 3$$

[答 案]《グラフ》

