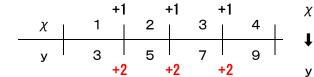
	7

1 次関数 1・1 次関数とグラフ

4 1次関数の値の変化(その1)

(1/5) ■ 変化の割合の意味 ■


変化の割合の意味

★知識の整理★

 χ の変化に伴って変化する y があり、 y は次の χ の式で表せるとします。

 $y = 2 \chi + 1$ (χ を 2 倍して 1 をたすと y になる)

[変化のようす]

 χ が1増えると

y は **2** 増える

①変化の割合の意味

上の表をみると、 χ が1増えるごとにyの値は「2」ずつ増えていることがわかります。

この χ が1増加したときの χ の増加量を「変化の割合」といいます。

②変化の割合の求め方(計算による求め方)

一般に、変化の割合は次の式で求めることができます。

上の表(1次関数 $y = 2 \chi + 1$)の場合で計算してみましょう。 例えば、 χ が 1 から 4 まで増えたときの y の変化の割合を求めてみます。

変化の割合
$$=$$
 $\frac{y \, \text{の増加量}}{\chi \, \text{の増加量}} = \frac{(変化後の y \, \text{の値}) - (変化前の y \, \text{の値})}{(変化後の \chi \, \text{の値}) - (変化前の \chi \, \text{の値})}$
 $= \frac{\{2 \times (4) + 1\} - \{2 \times (1) + 1\}}{4} = \frac{6}{3} = 2$

③変化の割合の求め方(1次関数の式の形から見つける)

上の表をみると、変化の割合は 2 であることがわかります。

この 2 は, $y = 2\chi + 1$ の χ の係数 2 と同じです。

一般に, $y = a \chi + b において,$

 χ の係数 a がこの 1 次関数の変化の割合を表しています。

1 次関数 1 · 1 次関数とグラフ
◆《変化の割合の意味/表題》 学力化 → / .
次の対応表で、χの変化に対する y の変化の割合を求めなさい。
$(1) \frac{\chi -5 7}{y 6 1 4} \qquad (2) \frac{\chi -8 -3}{y 2 -4}$
【考え方】 大小の割へ
変化の割合 = $\frac{y o 増加量}{\chi o 増加量}$ = $\frac{(変化後の y o 値) - (変化前の y o 値)}{(変化後の \chi o 値) - (変化前の \chi o 値)}$ [答案]
(1) 変化の割合 = $\frac{14-6}{7-(-5)} = \frac{8}{12} = \frac{2}{3}$
(2) 変化の割合 = $\frac{-4-2}{-3-(-8)} = -\frac{6}{5}$
◇《変化の割合の意味/表題》 学力化 → / ,
次の対応表で、 χ の変化に対する y の変化の割合を求めなさい。
(1) $\frac{x}{y} + \frac{3}{5} + \frac{9}{4} + $ (2) $\frac{x}{y} + \frac{7}{3} + \frac{8}{4} + $

*上のように、変化の割合を求める式を書いて、答えなさい。

[答案]

(2) 変化の割合=

1 次関数 1 • 1 次関数とグラフ

4 1次関数の値の変化(その1)

(3/5) ■ 変化の割合の意味 ■

◇《変化の割合の意味/表題》 学力化 → / ,

- ★演習★【 1 】 ------

次の対応表で、 x の変化に対する y の変化の割合を求めなさい。

(1)
$$\frac{\chi -3}{v 4} = \frac{1}{5}$$
 (2) $\frac{\chi -8}{v -6} = \frac{5}{2}$

*前のページのように、変化の割合を求める式を書いて、答えなさい。

「答 案]

(1) 変化の割合=

(2) 変化の割合=

◇《変化の割合の意味/文章題》 学力化 → /

-★解法の技術★ ----

1 次関数 $y = \frac{3}{5} \chi - 2$ で、次の各場面における y の変化の割合を

計算で求めなさい。

χが-5から10まで増加したとき

【考え方】

変化の割合 = $\frac{y \circ b d}{x \circ b d} = \frac{(変化後 \circ y \circ b d) - (変化前 \circ y \circ b d)}{(変化後 \circ x \circ b d) - (変化前 \circ x \circ b d)}$

変化の割合=
$$\frac{\left(\frac{3}{5}\times10-2\right)-\left\{\frac{3}{5}\times(-5)-2\right\}}{10-(-5)}=\frac{3}{5}$$

	7

1 次関数1・1次関数とグラフ4 1次関数の値の変化(その1)

(4/5) ■ 変化の割合の意味 ■

- ◇《変化の割合の意味/文章題》 学力化 → / ・
- ----- ★理解のチェック★ --------次の1次関数の変化の割合を計算で求めなさい。

(1)
$$y = \frac{7}{2} \chi - 3 \, \text{ c}$$
, $\chi \, \text{ if } 6 \, \text{ shows } 1 \, 8 \, \text{ まで増加したとき}$

(2)
$$y = -\frac{4}{3}\chi + 5$$
で、 χ が -6 から3まで増加したとき

*上のように、変化の割合を求める式を書いて、答えなさい。

[答案]

- (1) 変化の割合=
- (2) 変化の割合=
- ◇《変化の割合の意味/文章題》 学力化 → / ・

─★演習★【2】 ──

次の1次関数の変化の割合を計算で求めなさい。 $y = 4 \chi - 3$ で、 χ がー2から5まで増加したとき

*前のページのように、変化の割合を求める式を書いて、答えなさい。

「答 案]

変化の割合=

わかりましたね。1次関数では、式があると変化の割合がわかります。

1 次関数 1 · 1 次関数とグラフ
◇《変化の割合の意味/式の形から》 学力化 → / ★演習★【 3 】
次の1次関数の変化の割合をいいなさい。
(1) $y = 3 \chi - 2$ (2) $y = -\frac{1}{2} \chi + 1$ (3) $y = 5 \chi$
(4) $y = \chi - 2$ (5) $3 \chi + 2 y = 1$ (6) $6 \chi - 3 y - 2 = 0$
【考え方】 一般に、 $y = a \chi + b$ において、 χ の係数 a がこの 1 次関数の変化の割合を表しています。 (5), (6) は $y = \sim$ の形に変形してから変化の割合を調べます。
[答 案]
(1) $y = 3 \chi - 2 の変化の割合は。$
(2) $y = -\frac{1}{2} \chi + 1$ の変化の割合は。
(3) $y = 5 \chi$ の変化の割合は。
(4) $y = \chi - 2$ の変化の割合は。
(5) 3 χ + 2 y = 1 を y について解くと, y =
よって,変化の割合は
(6) 6 χ - 3 y - 2 = 0 を y について解くと, y =
よって、変化の割合は