5

1 次関数 1・1 次関数とグラフ

3 1次関数の式の形(その1)

(1/3) ■ 1次関数の式の判別 ■

1次関数の式の判別

- ●★解法の技術★の学習のしかた● -

- (1) 下の答案を理解し、「考え方」を覚えましょう。/覚えたら、.....
- (2) 模範解答を見ないで、「理解のチェック」の問題を解いてみましょう。 (答案を見ながら書くと勉強になりません。一度、「考え方」を頭の中に入れることが大切です。)

- ★解法の技術★ -

 χ , yの関係が、次のような式で表されているとき、yが χ の1次 関数であるといえるものを、次の(1)~(6)から選びなさい。

(1)
$$y + \chi = 6$$

(2)
$$3 \chi + 2 y = 6$$

(1)
$$y + \chi = 6$$
 (2) $3 \chi + 2 y = 6$ (3) $\frac{y}{\chi} = -2$

(4)
$$\chi y = 6$$

(5)
$$\chi = 2 \text{ y} - \frac{1}{2}$$

(4)
$$\chi y = 6$$
 (5) $\chi = 2 y - 1$ (6) $\frac{\chi}{2} + \frac{y}{3} = 1$

【考え方】ある式が1次関数かどうかは、その式を y =~の形に変形してか ら判断します。 $y = a \chi + b$ (あるいは $y = a \chi$, aとb は定数) となれば、その式は1次関数の式であるといえます。

「考える手順〕

| [答 案]

1 y=~の形に変形

(1)
$$y + \chi = 6$$

 $y = -\chi + 6$ ···O

▼ χ を移項

(2)
$$3 \chi + 2 y = 6$$

 $2 y = -3 \chi + 6$

◀3 x を移項

$$y = -\frac{3}{2}\chi + 3 \quad \cdots \bigcirc$$

◀両辺を2でわる

 $(3) \quad \frac{y}{\chi} = -2$

$$y = -2 \chi \quad \cdots O$$
(4) $\chi y = 6$

◀ 両辺に *χ* をかける

$$y = \sim 0$$
形に変形 $y = -2 \chi$ \cdots $y = 6$ $y = \frac{6}{\chi}$ $\cdots \times$

■ 両辺を χ でわる

(次のページへつづく) /

□ □ 【 1次関数 No. 5 (1/3)】 - (2枚目/2枚)

↗ (前のページからのつづき)

1
$$y = \sim \infty$$
形に変形 (5) $\chi = 2 y - 1$ 2 $y - 1 = \chi$ 2 $y = \chi + 1$

◀両辺を入れかえる

2
$$y = \chi + 1$$

┫-1を移項

$$y = \frac{1}{2} \chi + \frac{1}{2} \cdots O$$

◀ 両辺を2でわる

(6)
$$\frac{\chi}{2} + \frac{y}{3} = 1$$

$$3 \chi + 2 y = 6$$

◀両辺に6をかける

$$3 \chi + 2 y = 6$$

 $2 y = -3 \chi + 6$

◀3χを移項

$$y = -\frac{3}{2}\chi + 3$$
 ···O

◀両辺を2でわる

答 1 次関数は (1), (2), (3), (5), (6)

【注意】(5) 両辺を入れかえても符号は変わりません。(移項ではない)

- (2), (5), (6)…「両辺を2でわる」ときの具体的な手順は、 「すべての項を2でわる」ことです。
- (6) …「両辺に6をかける」ときの具体的な手順は、 「すべての項に6をかける」ことです。

1 次関数 1・1 次関数とグラフ		
5 3 1次関数の式の形(その1)		
(2/3) ■ 1次関数の式の判別 ■		
◇《1次関数の式の判別》 学力化 → / ,		
★理解のチェッ		
χ , yの関係が、次のような式で表されているとき、yが χ の1次 関数であるといえるものを、次の (1) ~ (6) から選びなさい。		
(1) $y + \chi =$	$= 6 (2) 3 \chi + 2 y = 6 (3) - 3$	$\frac{y}{\chi} = -2$
(4) $\chi y = 6$	(5) $\chi = 2 \text{ y} - 1$ (6)	$\frac{\chi}{2} + \frac{y}{3} = 1$
【考え方】ある式が1次関数かどうかは、その式を $y = \sim$ の形に変形してから判断します。 $y = a \chi + b$ (あるいは $y = a \chi$ 、 $a \ge b$ は定数)となれば、その式は1次関数の式であるといえます。		
[考える手順]	[答 案]	
	$(1) y + \chi = 6$	
1 y=~の形に変形		▼ <i>χ</i> を移項
	(2) $3 \chi + 2 y = 6$	
1 y=~の形に変形		◀ 3 <i>χ</i> を移項
		◀両辺を2でわる
	$(3) \frac{y}{\chi} = -2$	
1 v=~の形に変形		■ 両辺に ν をかける

(次のページへつづく) 🥕

■両辺を*χ*でわる

□ □ 【1次関数 No. 5 (2/3)】 - 〈2枚目/2枚〉

╱ (前のページからのつづき)

(5)
$$\chi = 2 \text{ y} - 1$$

1 y=~の形に変形

- ◀両辺を入れかえる
- ┫-1を移項
- ◀両辺を2でわる

(6)
$$\frac{\chi}{2} + \frac{y}{3} = \frac{1}{3}$$

1 y=~の形に変形

- ◀両辺に6をかける
- **◀**3 χ を移項
- ◀両辺を2でわる

答 1次関数は

5

1 次関数 1 · 1 次関数とグラフ

3 1次関数の式の形(その1)

(3/3) ■ 1次関数の式の判別 ■

◇《1次関数の式の判別》 学力化 → /

yがxの1次関数であるといえるものを、次の①~ \otimes から選びなさい。

①
$$\chi + y = 2$$
 ② $\chi^2 + y = 4$ ③ $\chi y = 2$ ④ $y = \frac{1}{\chi} + 3$

①
$$\chi + y = 2$$
 ② $\chi^2 + y = 4$ ③ $\chi y = 2$ ④ $y = \frac{1}{\chi} + 3$
⑤ $\frac{y}{\chi} = -1$ ⑥ $\frac{\chi}{3} = y - 5$ ⑦ 2 $\chi - 3$ $y = 0$ ⑧ $\frac{\chi}{3} - \frac{y}{4} = 2$

【考え方】ある式が1次関数かどうかは、その式を y =~の形に変形してか ら判断します。 $y = a \chi + b$ (あるいは $y = a \chi$, aと b は定数) となれば、その式は1次関数の式であるといえます。

[考える手順]

,[答案]

①
$$y + \chi = 2$$

1 y=~の形に変形

(2)
$$\chi^2 + y = 4$$

$$3 \chi y = 2$$

(4)
$$y = \frac{1}{\chi} + 3$$

$$\boxed{5} \quad \frac{y}{x} = -1$$

(次のページへつづく) /

□ □ 【 1次関数 No. 5 (3/3)】 - 〈2枚目/2枚〉

╱ (前のページからのつづき)

1 y=~の形に変形

- (7) 2 χ 3 v = 0
- 1 y=~の形に変形

- $8 \frac{\chi}{3} \frac{y}{4} = 2$
- 1 y=~の形に変形

答 1次関数は