1 次関数 1 • 1 次関数とグラフ

2 1次関数の意味(その3)

(1/4) ■ 1次関数の式の成り立つ範囲 ■

1次関数の式の成り立つ範囲

- ●★解法の技術★の学習のしかた● -

- (1) 下の答案を理解し、「考え方」を覚えましょう。/覚えたら、.....
- (2) 模範解答を見ないで、「理解のチェック」の問題を解いてみましょう。 (答案を見ながら書くと勉強になりません。一度、「考え方」を頭の中に入れることが大切です。)

- ★解法の技術★ -

自然現象の中には、1次関数になるものがよくあります。

気温は、地上から10kmまでは、高度が1km増すごとに6℃ずつ下 がっていくといいます。地上の気温が20℃のとき、地上からの高さ o_{χ} kmのところの気温を y° Cとして、次の問いに答えなさい。

- (1) $y \in \chi$ の式で表しなさい。 (χ の変域も書くこと)
- (2) 地上からの高さが3kmのところの気温を求めなさい。
- (3) 地上からの高さが 4.5 kmのところの気温を求めなさい。
- (4) 気温が 2°Cになるのは、地上から何kmのところですか。
- (5) vのとる値の範囲を求めなさい。

【考え方】最初に, χと y を確認しておきます。

 χ は「地上からの高さ」を表し、yは「気温」を表します。

xとyの変化の様子を表にまとめます。

χ : 高さ(km)	0	1	2	3	 1 0
y:温度(°C)	2 0	1 4	8	2	 -40

[考える手順]

[答案]

- 1 文を式にする
- 2 yについて解く
- **3** χの変域
- (1) $20 6 \times \chi = y$ $y = -6 \chi + 2 0 \cdots 1$ $0 \le \chi \le 10$
- * ①の式を利用する (2) ①の x に 3 を代入して,

$$y = -6 \times (3) + 20 = 2$$

答 2°C

(次のページへつづく)

□ □ 【 1次関数 No. 4 (1/4)】 - (2枚目/2枚)

╱ (前のページからのつづき)

- * ①の式を利用する (3) ①の x に 4 . 5 を代入して,
 - $y = -6 \times (4.5) + 20 = -7$ 答 - 7°C
- * ①の式を利用する (4) ①の y に 2 を代入して,
 - $(2) = -6 \chi + 20$
 - $6 \chi = 1 8$ より、 $\chi = 3$
- 答 3 km

- χの変域の確認
- (5) χ の範囲は、 $0 \le \chi \le 10$ だから、
 - $\cdot \chi = 0$ のとき (つまり, 地上 0 km の場合)
 - $y = -6 \times (0) + 20 = 20$
- χ = 10のとき(つまり,地上10kmの場合)
 - $y = -6 \times (10) + 20 = -40$

答 -40≦y≦20

4			1 次関数 1 ・ 1 次関数とグラフ
 ◇《1次関数の式の成り立つ範囲》 ◆ 理解のチェック★ 自然現象の中には、1次関数になるものがよくあります。 気温は、地上から10kmまでは、高度が1km増すごとに6℃ずつ下がっていくといいます。地上の気温が20℃のとき、地上からの高さの x kmのところの気温を y ℃として、次の問いに答えなさい。 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、 x と y を確認しておきます。	\mathbf{H}	4	2 1次関数の意味(その3)
 ★理解のチェック★ 自然現象の中には、1次関数になるものがよくあります。 気温は、地上から10kmまでは、高度が1km増すごとに6℃ずつ下がっていくといいます。地上の気温が20℃のとき、地上からの高さの x kmのところの気温をするさい。 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、xとyを確認しておきます。			(2/4)■ 1次関数の式の成り立つ範囲 ■
自然現象の中には、1次関数になるものがよくあります。 気温は、地上から10kmまでは、高度が1km増すごとに6℃ずつ下がっていくといいます。地上の気温が20℃のとき、地上からの高さの x kmのところの気温を y ℃として、次の問いに答えなさい。 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2° Cになるのは、地上から何kmのところですか。 (5) y のとる値の範囲を求めなさい。 【考え方】最初に、x と y を確認しておきます。	◇ 《 1	次関数の式の)成り立つ範囲》 学力化 → / /
 気温は、地上から10kmまでは、高度が1km増すごとに6℃ずつ下がっていくといいます。地上の気温が20℃のとき、地上からの高さの x kmのところの気温を y ℃として、次の問いに答えなさい。 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、x と y を確認しておきます。	★	理解のチェッ	ック★
がっていくといいます。地上の気温が20℃のとき、地上からの高さの x kmのところの気温を y ℃として、次の問いに答えなさい。 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、x と y を確認しておきます。			
の x kmのところの気温を y ℃として、次の問いに答えなさい。 (1) y を x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが 3 kmのところの気温を求めなさい。 (3) 地上からの高さが 4.5 kmのところの気温を求めなさい。 (4) 気温が 2 ° Cになるのは、地上から何kmのところですか。 (5) y のとる値の範囲を求めなさい。 【考え方】最初に、x と y を確認しておきます。		気温は,地	上から10kmまでは,高度が1km増すごとに6℃ずつ下
 (1) yを x の式で表しなさい。 (x の変域も書くこと) (2) 地上からの高さが 3 kmのところの気温を求めなさい。 (3) 地上からの高さが 4.5 kmのところの気温を求めなさい。 (4) 気温が 2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、x と y を確認しておきます。 x:地上からの高さ、y:気温 xと y の変化の様子を表にまとめます。 x : 高さ(km)			
(2) 地上からの高さが3 kmのところの気温を求めなさい。 (3) 地上からの高さが4.5 kmのところの気温を求めなさい。 (4) 気温が2°Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、xとyを確認しておきます。 x:地上からの高さ、y:気温 xとyの変化の様子を表にまとめます。 ※ 高さ(km)			-
 (3) 地上からの高さが 4.5 kmのところの気温を求めなさい。 (4) 気温が 2° Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、 Xと y を確認しておきます。			
 (4) 気温が2°Cになるのは、地上から何kmのところですか。 (5) yのとる値の範囲を求めなさい。 【考え方】最初に、Xとyを確認しておきます。			
(5) yのとる値の範囲を求めなさい。 【考え方】最初に、 x と y を確認しておきます。 x : 地上からの高さ、 y : 気温 x と y の変化の様子を表にまとめます。 x : 高さ(km)			
【考え方】最初に、xとyを確認しておきます。 x:地上からの高さ、y:気温 xとyの変化の様子を表にまとめます。 X:高さ(km) … 10 y:温度(°C) … 10 [考える手順] [答案] 1 文を式にする (1) 2 yについて解く … ① 3 xの変域 … ① * ①の式を利用する (2) ①のを代入して、			
X:地上からの高さ、y:気温 Xとyの変化の様子を表にまとめます。 X:高さ(km)	(5) yのとる	胆の配囲を水めなさい。
X と y の変化の様子を表にまとめます。 X : 高さ (km) 1 0 y : 温度 (° C) 1 0 [考える手順] [答 案] [1) 1 文を式にする (1) 2 yについて解く 3 x の変域 を代入して、	【考え	方】最初に	, χ と y を確認しておきます。
X:高さ(km) … 10 y:温度(°C) … 10 [考える手順] [答案] … 1 文を式にする … … 2 yについて解く … … 3 xの変域 を代入して、		<i>x</i> : 地	上からの高さ, y : 気温
y:温度(°C) [考える手順] [答案] 1 文を式にする (1) 2 yについて解く …① 3 xの変域 を代入して、	χ٤	:уの変化の	様子を表にまとめます。
y:温度(°C) [考える手順] [答案] 1 文を式にする (1) 2 yについて解く …① 3 xの変域 を代入して、			
[考える手順] [答案] 1 文を式にする (1) 2 yについて解く …① 3 xの変域 …① * ①の式を利用する を代入して、	χ:	高さ(km)	10
1 文を式にする (1) 2 yについて解く …① 3 xの変域 …① * ①の式を利用する を代入して、	у:	温度(°C)	
1 文を式にする (1) 2 yについて解く …① 3 xの変域 …① * ①の式を利用する を代入して、			
2 yについて解く …① 3 xの変域 …① * ①の式を利用する を代入して、	[考え	こる手順]	[答 案]
3 xの変域 * ①の式を利用する (2) ①の を代入して、	1 文	を式にする	(1)
* ①の式を利用する (2) ①のを代入して,	2 y	こついて解く	①
* ①の式を利用する (2) ①のを代入して,		の変域	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
			(2) (10) +4317
<u></u>	* (1	の式を利用する	(2) (10)
			<u></u>
* ①の式を利用する (3) ①のを代入して,	* 1	の式を利用する	(3) ①のを代入して,
· · · · · · · · · · · · · · · · · · ·			答
(次のページへつづく) <i>✓</i>			

□ □ 【1次関	数 No. 4(2/4)】 -〈2枚目/2枚〉
/ (前のページか	らのつづき)
* ①の式を利用する	(4) ①のを代入して,
	 答
	<u> </u>
 χ の変域の確認 	(5) χの範囲は,だから,
2 yの最大値	•
3 yの最小値	•
4 答	<u>答</u>

		1 次関	数 1・	1 次関	数とグラ	フ			
H	4		2 12	欠関数の	意味(そ	その3)			
		(3/4	1) ■	1次関数	ぬ式の	或り立:	つ範囲		
♦ 《12	マ関数の式の	成り立つ	9範囲》	学力化 二	· /	,			
──★ 濱	買★【1	. —							
2	4 cmのロー	ソクがあ	ります。	このロー	ーソクに	火をつ	けると	毎分 2 cm (カ
割合	割合で短くなるといいます。 χ 分後のローソクの長さを y cm として,次の				カ				
問い	に答えなさ	, \ ₀							
(1)	y を <i>x</i> の式 [*]	で表しな	さい。	(χの変	域も書く	こと)			
(2)	yはχのど	のような	関数にな	よってい	ますか。				
(3)	3分後のロー	ーソクの	長さをす	えめなさ	い。				
(4)	ローソクの	長さが 1	3㎝にた	ょるのは	何分後で	すか。			
(5)	y のとる値(の範囲を	求めなさ	こい。					
				- 1 - 1					
【考え	方】最初に、	<i>X</i>	を確認し	しておき	ます。				
	χ:	,	у:			_			
χ٤	уの変化の	様子を表	にまとめ	ります。					
		1				Ī	İ	ı	
<i>X</i> :						•••			
у:						•••	0		
		1	I	ı	ı		ı	ı	
[考え	る手順]	[答	案]						
1 文 2	と式にする	(1)							
2 11-	ついて解く					(1)			
_						\odot			
3 x 0	の変域				-				
		(2) y la	tχの						
* 10	の式を利用する	(3)							
								答	
								<u>H</u>	

(次のページへつづく) 🥕

	関数 No. 4 (3/4) \mathbf{J} 一〈2枚目/2枚〉
/ (前のページカ	からのつづき)
* ①の式を利用する	(4)
	<u></u>
1 χ の変域の確認	(5) χの範囲は,だから,
<mark>2</mark> yの最大値	•
3 yの最小値	•
4 答	答
	I and the second se

П	2	4

1 次関数 1 · 1 次関数とグラフ

2 1次関数の意味(その3)

(4/4) ■ 1次関数の式の成り立つ範囲 ■

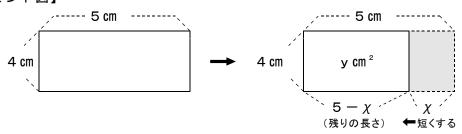
◇《1次関数の式の成り立つ範囲》 学力化 → / ・

-★演習★【2】 ----

縦 4 cm, 横 5 cmの長方形があります。横の長さを χ cmだけ短くしたときの長方形の面積を χ cm²とする。

このとき、次の問いに答えなさい。

- (1) $y \in \chi$ の式で表しなさい。 (χ の変域も書くこと)
- (2) vは χ のどのような関数になっていますか。
- (3) 横の長さを I cm短くしたときの長方形の面積を求めなさい。
- (4) 長方形の面積が 1 2 cm²となるのは、横の長さを何cm短くしたときですか。


【考え方】最初に、 χ とyを確認しておきます。

χ : _____, y : _____

 χ とyの変化の様子を表にまとめます。

<i>X</i> :			
у:			 0

【ヒント図】

[考える手順]	[答	案]	
1 文を式にする	(1)		
2 yについて解く			 1
3 χの変域			

(次のページへつづく) ↗

	関数	No. 4 (4/4) 】 - (2枚目/2枚)
/ (前のページ)	からの)つづき)
	(2)	y は χ の
* ①の式を利用する		
		<u></u> <u>答</u>
* ①の式を利用する	(4)	
		<u></u>