1 5

第1章 いろいろな式 1・整式の乗法・除法と分数式

4 二項定理(その3)

(1/7) ■ 二項定理の応用① ■

多項定理と係数決定

- ★解法の技術★ -

(a-2b+3c)[®]の展開式における、次の項の係数を求めなさい。

(1)
$$a^4 b^3 c$$

【考え方】「係数の求め方」は、プリントNo.14(1/5)を参照。

[考える手順]

|[答 案]

1 基本形に変形する

$$(a-2b+3c)^{8} = {a+(-2b)+(3c)}^{8}$$

これを展開したとき.

2 項を求める

(1) a ⁴ b ³ c の項は、

$$= \frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} a^{4} \times 4 \cdot (-8 b^{3}) \times 1 \cdot 3 c$$

$$= 7 \ 0 \ a^{4} \times (-3 \ 2 \ b^{3}) \times 3 \ c$$

$$=$$
 -6 7 2 0 a 4 b 3 c

となる。

3 答を書く

よって、a⁴b³cの係数は <u>-6720</u>

2 項を求める

(2) b ⁶ c ²の項は,

$$= \frac{8 \cdot 7}{2 \cdot 1} \cdot 6 \cdot 4 \cdot b^{6} \times {}_{2}C_{2}(3 \cdot c)^{2}$$

 $= 1792b^6 \times 9c^2$

 $= 16128b^6c^2$

となる。

3 答を書く

よって, b ⁶ c ²の係数は <u>16128</u>

《多項定理》

一般に、(a+b+c) の展開式におけるa b c の係数は、次のようになる。

(1) の確かめ

$$a^4 b^3 c$$
 の係数は、 $\frac{8!}{4!3!1!} = \frac{8 \cdot 7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 280$
 $280 \times (-2)^3 \times 3 = -6.72.0$

となり, 合っている。

1 5	第1章 いろいろな式 1・整式の乗法・除法と分数式 4 二項定理(その3)			
	(2/7)■ 二項定理の応用① ■			
◇《多項定理と係数	读決定》 <mark>学力化</mark> → /			
★理解のチェッ	√ク★			
次の問いに答えな	さい。			
(1) (a + 3 b - 2 c) ⁶ の展開式における,次の項の係数を求めなさい。				
\bigcirc a 2 b 2 c 2	② a³c³			
(2) $(a + b + c)$)゜の展開式における,次の項の係数を求めなさい。			
\bigcirc a 3 b c 2	② a²b⁴			

Π	1	5
-------	---	---

4 二項定理(その3)

(3/7) ■ 二項定理の応用① ■

一★演習★【1】 -----

次の問いに答えなさい。

- (1) (a + 2b 3c) の展開式における、次の項の係数を求めなさい。
- ① a²b³c²
- (2) $(\chi + y + z)$ °の展開式における、次の項の係数を求めなさい。
 - ① $\chi^6 y z^2$
- ② $\chi^3 y^3 z^3$
- (3) $\chi^2 z^7$

H	1	5
---	---	---

4 二項定理(その3)

(4/7) ■ 二項定理の応用① ■

◇《多項定理と係数決定》
学力化
→ / .

一★演習★【2】 ------

次の問いに答えなさい。

- (1) (2a-b+3c)°の展開式における、次の項の係数を求めなさい。
 - (1) $a^2b^2c^4$ (2) a^4bc^3 (3) a^3b^5
- (2) $(\chi + y + z)^7$ の展開式における、次の項の係数を求めなさい。
 - (1) $\chi^{4} v^{2} z$
- ② $\chi^2 v^3 z^2$
- ③ χ⁴ z³

【考え方】解き方は【1】とまったく同じです。

4 二項定理(その3)

(5/7) ■ 二項定理の応用① ■

多項定理と係数決定(特殊問題ー場合分け)

◇《多項定理と係数決定/特殊問題-場合分け》学力化→ / ・

- ★演習★【3】 ---

次の問いに答えなさい。

- (1) 次の式の展開式における [] 内の項の係数を求めなさい。 $(1+2\chi-y^2)^7$ [χ^4y^6]
- (2) $(\chi^2 + \chi + 1)^8$ の展開式における χ^4 の係数を求めなさい。
- (3) $(1+2\chi-\chi^2)^{10}$ の展開式で、 χ^3 の係数を求めなさい。
- 【考え方】(2) $(\chi^2)^{\circ}$ + $(\chi)^{\circ}$ 2 p + q = 4 となる p, q の組合せを考える。(3通りある) ただし, p, q は 0 以上の整数とする。 また,この場合, $(\chi^2 + \chi + 1)^{\circ}$ であるので,定数項は,1 4 となる。
 - (3) $(\chi)^p + (\chi^2)^q p + 2q = 3$ となるp, q の組合せを考える。(2通りある) 定数項は、 1^7 となる。

1 5

第1章 いろいろな式 1・整式の乗法・除法と分数式

4 二項定理(その3)

(6/7) ■ 二項定理の応用① ■

定数項

-- ★解法の技術★ -

次の式の展開式において, []に示した項の係数を求めなさい。

$$(a^2 - \frac{1}{a})^6$$
 [定数項]

【考え方】約分すると文字が消える(1となる)組合せを考える。

この問題では、 $(a^2)^2 \cdot (-\frac{1}{a})^4$ が定数となる。

[考える手順]

1 基本形に変形する
$$\left(a^2 - \frac{1}{a}\right)^6 = \left\{\left(a^2\right) + \left(-\frac{1}{a}\right)\right\}^6$$

これを展開したとき、 $(a^2)^2 \times (-\frac{1}{a})^4$ が定数となるから、

2 項を求める

定数項は,

$$_{6}$$
 C $_{2}$ (a^{2}) 2 × $_{4}$ C $_{4}$ ($-\frac{1}{a}$) 4

$$=\frac{6\cdot 5}{2\cdot 1} a^4 \times 1 \cdot \frac{1}{a^4}$$

3 答を書く

よって, 定数項は 15

◇《定数項》 学力化 → / ,

-★演習★【4】 ----

次の式の展開式において、 [] に示した項の係数を求めなさい。

(2)
$$(2 \chi^4 - \frac{1}{\chi})^{10}$$
 [定数項]

「答 案】

	1	5

4 二項定理(その3)

(7/7) ■ 二項定理の応用① ■

次の式の展開式において, []に示した項の係数を求めなさい。

(1)
$$(\chi + \frac{1}{\chi^2} + 1)^5$$
 [定数項]

(1)
$$(\chi + \frac{1}{\chi^2} + 1)^5$$
 [定数項] (2) $(\chi + 1 + \frac{1}{\chi})^7$ [定数項]