1 4

第2章 2次関数 3・2次関数と方程式・不等式

3 2次不等式の応用(その3)

(1/5) ■ 2次方程式の解の存在範囲(5) ■

2次方程式の解の存在範囲(5)-解のとりうる範囲

◇《2次方程式の解の存在範囲(5)ー解のとりうる範囲》 学力化 → / ...

-★解法の技術★-

 χ の 2 次関数 $f(\chi) = \chi^2 - 2 p \chi - p^2 + 2 p - 1$ について、次の問いに答えよ。

- (1) p がどのような値をとっても $f(\chi) < 0$ となる χ の値の範囲を求めよ。
- (2) 2次方程式 f(x) = 0 の実数解 x のとりうる値の範囲を求めよ。

【考え方】(1) $f(\chi)$ を p について整理した関数を g(p) とおくと,

$$g(p) = -p^2 + 2(1 - \chi)p + \chi^2 - 1$$

ここで、p どのような値をとってもg(p) < 0 (つまり $f(\chi)$ < 0) となるためには、g(p) = 0 の判別式 D_1 が、 D_1 < 0 となればよい。

すなわち、判別式は係数についての関係式だから、 χ を ρ の係数にすれば ρ の判別式を作ることで、 χ の範囲を調べることができる。

(2) (1) と同様、g(p) で考える。 g(p) = 0 が実数解をもつような実数 χ の範囲を考える。

[答案]

(1) 1 (与式をpについての2次式に変える)

 $f(\chi) = \chi^2 - 2 p \chi - p^2 + 2 p - 1$ を p について整理した式を g(p) とおくと, $g(p) = -p^2 + 2 (1 - \chi) p + \chi^2 - 1$

- 2 (答えが満たすべき条件を示す)
 - ・ここで、p がどのような値をとっても、 $f(\chi) < 0$ となるのは、g(p) = 0 の判別式を D_1 とすると、 $D_1 < 0$ のときである。

 $\blacktriangleleft f(\chi)$ とg(p) は同じ式

3 (χの範囲を求める)

• D₁ < 0 & β , 2 χ (χ - 1) < 0 0 < χ < 1

よって、求める χ の値の範囲は、 $0 < \chi < 1$

- (2) 1 (与式をpについての2次式に変える)

(次のページへつづく) /

□ □ 【 2次関数と方程式·不等式 No. 1 4 (1/5)】 - 〈2枚目/2枚〉

╱ (前のページからのつづき)

② (答えが満たすべき条件を示す) g(p) = 0 を満たす実数 p が存在するのは、判別式 $D_1 \ge 0$ のときである。

③ (χの範囲を求める)したがって, (1) より,2 χ (χ - 1) ≧ 0

 $\chi \leq 0$, $1 \leq \chi$

よって、求める実数解 χ の値の範囲は、 $\chi \leq 0$, $1 \leq \chi$

第2章 2次関数 3・2次関数と方程式・不等式 1 4 ② 2次不等式の応用(その3) (2/5) ■ 2次方程式の解の存在範囲(5) ■						
\lozenge 《 2 次方程式の解の存在範囲 (5) 一解のとりうる範囲》 学力化 \to						
2 (答えが満たすべき条件を示す)						
・ここで、 p がどのような値をとっても、 $f(\chi)$ $<$ 0 と $\P(\chi)$ と $g(p)$ は同じ式						
なるのは、 $g(p)=0$ の判別式を D_1 とすると、						
のときである。						
3 (χの範囲を求める)						
$\cdot \frac{D_1}{4} = \dots$						
よって,求める χ の値の範囲は,						
(2) 1 (与式をpについての2次式に変える)						
(1) より, $g(p) = $						
2 (答えが満たすべき条件を示す)						
g(p)=0 を満たす実数 p が存在するのは、判別式のときである。						
3 (χの範囲を求める)						
したがって、(1) より、						

よって,求める実数解 χ の値の範囲は, $_{_____$

1 4

第2章 2次関数 3・2次関数と方程式・不等式

3 2次不等式の応用(その3)

(3/5) ■ 2次方程式の解の存在範囲(5) ■

◇《2次方程式の解の存在範囲(5)ー解のとりうる範囲》 学力化 → / ・

-★演習★【1】 ---

 χ の 2 次方程式 $(a^2+1)\chi^2+(a+2)\chi-1=0$ の実数解 χ のとりうる値の範囲を求めよ。ただし、a は実数とする。

【考え方】判別式は係数についての関係式だから、 χ を a の係数にすれば a の判別式を作ることで、 χ の範囲を調べることができる。

だから、与えられた2次方程式をaについて整理し、その判別式を利用する。

[答 案]

	1	4
	•	

第2章 2次関数 3・2次関数と方程式・不等式

3 2次不等式の応用(その3)

(4/5) ■ 2次方程式の解の存在範囲(5) ■

◇《2次方程式の解の存在範囲(5) 一解のとりうる範囲》 **学カ化 →** / ,

ー★演習★【2】 ——

 χ についての2次方程式 χ^2 +2m χ +4m 2 +2m=0 (mは実数)がある。

- (1) $\chi = 1$ がこの方程式の解となるような定数mの値を求めよ。
- (2) $\chi = 2$ はこの方程式の解となり得ないことを示せ。
- (3) この方程式の実数解のとり得る値の範囲を求めよ。

[答案]

	1	4

第2章 2次関数 3・2次関数と方程式・不等式

3 2次不等式の応用(その3)

(5/5) ■ 2次方程式の解の存在範囲(5) ■

◇《2次方程式の解の存在範囲(5)ー解のとりうる範囲》 学力化 → / ,

一★演習★【3】 ——

 χ についての2次方程式 $\chi^2 - 2m\chi - m^2 - 4 = 0$ (mは実数)がある。

- (1) $\chi = 2$ がこの方程式の解となるような定数mの値を求めよ。
- (2) $\chi = -1$ はこの方程式の解となり得ないことを示せ。
- (3) この方程式の実数解のとり得る値の範囲を求めよ。

[答案]