2

第5章 微分法 2・いろいろな関数の導関数

1 対数関数・指数関数の導関数(その1)

(1/11) ■ 対数関数の導関数 ■

対数関数の導関数(基本形)

- ★知識の整理★ -----

【1】対数関数の導関数(基本形①)

対数関数 $y = \log_a \chi$ の導関数について考えよう。

$$(\log_a \chi)' = \lim_{h \to 0} \frac{\log_a (\chi + h) - \log_a \chi}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \log_a \frac{\chi + h}{\chi}$$

$$= \lim_{h \to 0} \frac{1}{h} \log_a \left(1 + \frac{h}{\chi}\right)$$

$$= \lim_{h \to 0} \frac{1}{h} \log_a \left(1 + \frac{h}{\chi}\right)$$

ここで、
$$\frac{h}{\chi} = t とおくと、 h \to 0 のとき t \to 0 であるから、$$

$$y' = \lim_{t \to 0} \frac{1}{\chi t} \log_a (1+t)$$

$$= \frac{1}{\chi} \lim_{t \to 0} \log_a (1+t)^{\frac{1}{t}}$$

そこで、 $t \rightarrow 0$ のときの $(1+t)^{\frac{1}{t}}$ の極限を調べてみよう。

t	$(1+t)^{\frac{1}{t}}$	t	$(1+t)^{\frac{1}{t}}$
0.1	2.593742	-0.1	2.867971 · · · · ·
0.01	2.704813	-0.01	2.731999
0.001	2.716923	-0.001	2.719642
0.0001	2.718145	-0.0001	2.718417
0.00001	2.718268	-0.00001	2.718295 · · · · ·
l .	1	II.	1

上の表から $t \rightarrow 0$ のとき、 $(1+t)^{\frac{1}{t}}$ が一定の値に近づくことが予想される。そして、

実際に、 $\lim_{t\to 0} (1+t)^{\frac{1}{t}}$ は極限値をもつことがわかっている。この極限値をe で表す。

すなわち,
$$e = \lim_{t\to 0} (1+t)^{\frac{1}{t}}$$

このe を使うと、 $(\log_a \chi)' = \frac{1}{\chi} \log_a e$ となる。

とくに、
$$a=e$$
 のとき、 $(\log_e \chi)' = \frac{1}{\chi}$ である。

□ □ 【いろいろな関数の導関数 No. 2 (1/11) 】 - (2枚目/2枚)

╱ (前のページからのつづき)

【2】対数関数の導関数(基本形②)

e を底とする対数 $\log_e \chi$ を、 χ の自然対数という。

自然対数 $\log_e \chi$ は、底のe を省略して $\log \chi$ と書くことが多い。このとき、

$$\log e = 1$$
, $\log_a e = \frac{\log e}{\log a} = \frac{1}{\log a}$

であるから、前ページの対数関数の導関数は、次のようになる。

$$(\log_a \chi)' = \frac{1}{\chi} \log_a e = \frac{1}{\chi \log a}$$
となる。

とくに、 $\mathbf{a} = e$ のとき、 $\log e = 1$ であるから、 $(\log \chi)' = \frac{1}{\chi}$ である

-▼ 対数関数の導関数

基本形①: $(\log \chi)' = \frac{1}{\chi}$

◀底が е の場合 (自然対数の場合)

基本形②: $(\log_a \chi)' = \frac{1}{\chi \log a}$

◀底が е 以外の定数の場合