2

第5章 微分と積分 2・導関数の応用

1 関数の値の増加・減少(その2)

(2/8) ■ 極大・極小 ■

- ★解法の技術★ -

次の関数の極値を求めなさい。また、そのグラフをかきなさい。

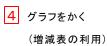
(1)
$$y = \chi^3 - 6 \chi^2 + 1 6$$

(2)
$$y = -\chi^3 + 3\chi^2 - 5$$

(1)
$$y = \chi^3 - 6 \chi^2 + 16$$
 (2) $y = -\chi^3 + 3 \chi^2 - 5$ (3) $y = \chi^3 - 6 \chi^2 + 12 \chi$

[考える手順]

1 導関数を求める



5 極値を求める (グラフの利用)

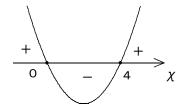
1 導関数を求める

2 + - の境目を調べる

[答 案]

(1)
$$y = \chi^3 - 6 \chi^2 + 1 6$$

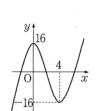
 $y' = 3 \chi^2 - 1 2 \chi$
 $y' = 0 となる \chi の値を調べると、
 $3 \chi^2 - 1 2 \chi = 0$
 $\chi^2 - 4 \chi = 0$
 $\chi (\chi - 4) = 0$
 $\chi = 0$, 4$



よって, 増減表は

Χ		0		4	
у '	+	0	_	0	+
У	1	1 6	/	- 1 6	1

極大値 $f(0)=(0)^3-6\cdot(0)^2+16=16$ 極小値 $f(4)=(4)^3-6\cdot(4)^2+16=-16$

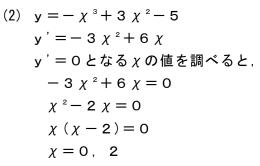


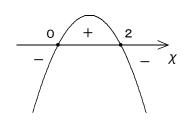
軸のx,y,原点のOを必ずかく (ないと減点)

学校で、軸との交点をかくように 習っている場合は必ずかくこと y 軸との交点→定数項

x軸との交点 $\rightarrow y=0$ を解いて求める

 $\chi = 0$ で極大値 1 6 $\chi = 4$ で極小値 -1 6





□ □ 【 導関数の応用 No. 2 (2/8) 】 - (2枚目/2枚)

╱ (前のページからのつづき)

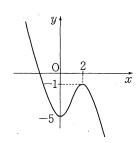
3 増減表をかく

よって, 増減表は

Χ	•••	0		2	•••
у '	_	0	+	0	-
У	7	– 5	1	– 1	1

極小値 $f(0) = -(0)^3 + 3 \cdot (0)^2 - 5 = -5$ 極大値 $f(2) = -(2)^3 + 3 \cdot (2)^2 - 5 = -1$

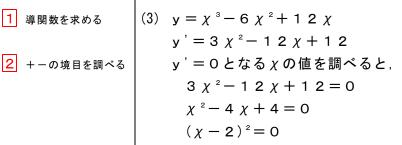
4 グラフをかく (増減表の利用)



5 極値を求める (グラフの利用)

 $\chi = 0$ で極小値 -5 $\chi = 2$ で極大値 -1

1 導関数を求める



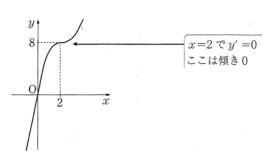
3 増減表をかく

よって, 増減表は

 $\chi = 2$

Х		2	
у '	+	0	+
У	1	0	1

4 グラフをかく (増減表の利用)



5 極値を求める (グラフの利用) 極値なし

【注】正・負が変わる点が極値 (正・正では極値なし)

2・導関数の応用 №.2 (2/8)

《資料》 《3次関数のグラフ(まとめ)》

-★知識の整理★ --

 $f'(x) = 3ax^2 + 2bx + c \quad (a > 0)$

f'(x)=0 (2次方程式) の $D=4(b^2-3ac)$ で

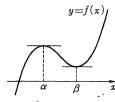
(i) D>0 のとき (ii) D=0 のとき (iii) D<0 のとき

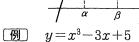
 $f'(x) = 3a(x-\alpha)(x-\beta)$ $f'(x) = 3a(x-\alpha)^2$ f'(x) > 0

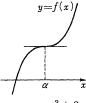
\boldsymbol{x}		α		β	
f'(x)	+	0	_	0	+
f(x)	1	極	\	極	1

x		α	
f'(x)	+	0	+
f(x)	1		1

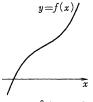
x	
f'(x)	+
f(x)	1







 $y = x^3 + 3$

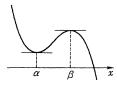


 $y = x^3 + x + 3$

[2] $f(\chi) = a \chi^3 + b \chi^2 + c \chi + d (a < 0) \sigma \sigma \sigma$

a>0 のときと同様に概形は次のようになる。

(i) D>0 のとき (ii) D=0 のとき (iii) D<0 のとき



*【参照】4次関数のグラフ(まとめ)

 $f(\chi) = a \chi^4 + b \chi^3 + c \chi^2 + d \chi + e (a \neq 0) \text{ } O \text{ } J \text{ }$

(i) a>0 のとき

(ii) a<0 のとき

などの形になる。

