発展

第1章 平面上の曲線 1・2次曲線

4 2次曲線と直線の共有点(その2)

【No.8の後で学習☆発展問題】 (1/6)

2次曲線(放物線)の接線

◇《2次曲線(放物線)の接線》 学力化 → /

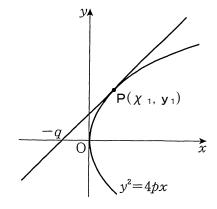
-★知識の整理★ -

【1】放物線の接線

放物線上の点 (χ_1, y_1) における接線の方程式

$$y^2=4p\chi$$
 ··· $y_1y=2p(\chi+\chi_1)$

$$\chi^{2} = 4py$$
 $\chi_{1} \chi = 2p(y+y_{1})$



【2】放物線の接線 $y_1y=2p(\chi+\chi_1)$ の証明

点 (χ_1, v_1) を通る直線を $v-v_1=m(\chi-\chi_1)$ …① とする。

① ኔ ሀ,
$$y=m\chi-m\chi_1+y_1$$

 $y=m\chi-(m\chi_1-y_1)\cdots$ ①'

①'を
$$y^2=4p\chi$$
 に代入して、
 $\{m\chi-(m\chi_1-y_1)\}^2=4p\chi$
 $m^2\chi^2-2(m\chi_1-y_1)m\chi+(m\chi_1-y_1)^2-4p\chi=0$
 $m^2\chi^2-2(m^2\chi_1-my_1+2p)\chi+(m\chi_1-y_1)^2=0$ …②

②の2次方程式の判別式をDとし、D=0として重解を χ_1 とすると、

■重解のとき、
$$\chi = \frac{-b}{a}$$
 ($\frac{D}{4}$ のとき)
($\frac{D}{4} = b'^2 - ac = 0$ であるから。)

③をmについて解くと.

$$m^{2}\chi_{1}=m^{2}\chi_{1}-my_{1}+2p$$

 $m^{2}\chi_{1}=m^{2}\chi_{1}-my_{1}+2p$
 $my_{1}=2p$
 $m=\frac{2p}{y_{1}}$... ④

4を1に代入して,

$$y-y_1 = \frac{2p}{y_1}(\chi - \chi_1)$$

$$yy_1-y_1^2=2p(\chi-\chi_1)$$
 ... ⑤

⑤ $(y_1^2 = 4p\chi_1)$ を代入して,

$$yy_1-4p\chi_1=2p(\chi-\chi_1)$$

$$yy_1 = 2p \chi - 2p \chi_1 + 4p \chi_1$$

$$yy_1 = 2p \chi + 2p \chi_1$$

$$yy_1 = 2p(\chi + \chi_1)$$

発展

第1章 平面上の曲線 1・2次曲線

4 2次曲線と直線の共有点(その2)

【No.8の後で学習☆発展問題】(2/6)

◇《2次曲線(放物線)の接線》 **学力化 →** / .

《とめ曲線 へ放*筒線》* 一★解法の技術★ ----

次の接線の方程式を求めよ。

点(-2, 1)から放物線 $y^2 = 4\chi$ に引いた接線

【考え方】まず、接点の座標を (χ_1, y_1) とおき、接線の方程式を χ_1, y_1 で表す。

「接線は点(-2,1)を通る」

「点 (χ_1, y_1) は放物線 $y^2 = 4 \chi$ 上の点」

であることを利用して、 χ_1 、 y_1 の連立方程式を導く。

[答 案]

0 (定義)

接点の座標を (χ_1, y_1) とおくと、接線の方程式は、

$$\P$$
 $y^2 = 4 \chi \Leftrightarrow y^2 = 4 \cdot 1 \cdot \chi \downarrow 0, p = 1$

$$y_1y=2(\chi+\chi_1)$$
 ··· ①

■接点の座標を(X 1, y 1)とおいたときの接線の方程式

1 (接点の座標を求める)

・①が点(-2, 1)を通るから、 $y_1 \cdot 1 = 2(-2 + \chi_1)$ より、

$$y_1 = 2 \chi_1 - 4 \cdots 2$$

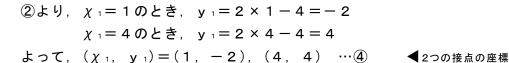
・また、点 (χ_1, y_1) は放物線 $y^2 = 4 \chi$ 上の点より、

$$y_1^2 = 4 \chi_1 \cdots 3$$

②を③に代入して y_1 を消去し、 χ_1 の2次方程式を作ると、

$$(2 \chi_{1} - 4)^{2} = 4 \chi_{1}$$

 $4 \chi_{1}^{2} - 16 \chi_{1} + 16 - 4 \chi_{1} = 0$
 $\chi_{1}^{2} - 5 \chi_{1} + 4 = 0$
 $(\chi_{1} - 1)(\chi_{1} - 4) = 0 \& 0, \chi_{1} = 1, 4$



2 (接線の方程式を求める)

④のそれぞれの値を①に代入して、接線の方程式を求めると、

$$-2 y = 2 (\chi + 1)$$
より, $\chi + y + 1 = 0$
4 $y = 2 (\chi + 4)$ より, $\chi - 2 y + 4 = 0$

