2 等式の変形

♣33」【No.33の後で学習♣補充問題】(1/5)

等式の変形

- ♣補充演習♣【 1 】 -

次の等式を []内の文字について解きなさい。

(1)
$$3 x + 2 y = 5$$

(1)
$$3 \chi + 2 y = 5$$
 [χ] (2) $-5 \chi + y = 2$ [y]

(3)
$$S = a h$$

[a] (4)
$$\ell = a - \pi r$$
 [r]

- 2つの前処理 (A)解く文字を含む式が左辺になるように両辺を入れかえる
 - (B)分母を払う(両辺に、分母の最小公倍数をかける)

【考え方】2つの前処理(A、B)をしてから、

①左辺が「**積**」の形のとき⇒不要な項で両辺を**わる** ◆

ab, a (b+c) などの形

②左辺が「和」の形のとき⇒不要な項を右辺へ*移項する* ■

a+b, ab+cd, a-bcなどの形

[答案]

(1)
$$3 \chi + 2 y = 5$$
 [χ] (2) $-5 \chi + y = 2$ [y]

(2)
$$-5 x + v = 2$$

(3)
$$S = ah$$
 [a] $(4) \ell = a - \pi r$ [r]

$$(1)$$
 0 $-$ 0 π

2 等式の変形

♣33」【No.33の後で学習♣補充問題】(2/5)

- ♣補充演習♣【2】 ------

次の等式を []内の文字について解きなさい。

(1)
$$c = a + b$$

(1)
$$c = a + b$$
 [a] (2) $3 \chi - y = 6$ [y]

(3)
$$a + 2b + c = 0$$
 [b] (4) $a - b - 3c = 0$ [c]
(5) $c = 2a + b$ [a] (6) $\ell = 2\pi r$ [r]
(7) $V = 2\pi r^2 h$ [h] (8) $a\chi + b y = z$ [y]

(4)
$$a - b - 3 c = 0$$

(5)
$$c = 2a + b$$

(6)
$$\ell = 2 \pi$$

(7)
$$V = 2 \pi r^2 h$$

(8) a
$$\chi$$
 + b y = z

[答 案]

(1)
$$c = a + b$$

(1)
$$c = a + b$$
 [a] (2) $3 \chi - y = 6$ [y]

(3)
$$a + 2b + c = 0$$
 [b] (4) $a - b - 3c = 0$ [c]

(4)
$$a - b - 3 c = 0$$

(5)
$$c = 2 a + b$$
 [a] (6) $l = 2 \pi r$ [r]

(6)
$$0 = 2 \pi r$$

(7)
$$V = 2 \pi r^2 h$$
 [h] (8) $a \chi + b y = z$ [y]

(8)
$$a v + b v = 3$$

2 等式の変形

♣33 【No.33の後で学習♣補充問題】(3/5)

- ♣補充演習♣【3】 ------

次の等式を[]内の文字について解きなさい。

(1)
$$m = \frac{1}{2} (a + b)$$
 [a] $(2) V = \frac{1}{3} \pi r^2 h$ [h]

(2)
$$V = \frac{1}{3} \pi r^2 h$$

(3)
$$\chi = \frac{1}{4} (a + 2 b) [b]$$

(3)
$$\chi = \frac{1}{4} (a + 2 b) [b]$$
 (4) $b = \frac{a (r - 1)}{3}$ [r]

「答 案】

(1)
$$m = \frac{1}{2} (a + b)$$
 [a

(1)
$$m = \frac{1}{2} (a + b) [a]$$
 (2) $V = \frac{1}{3} \pi r^2 h [h]$

(3)
$$\chi = \frac{1}{4} (a + 2 b)$$
 [b]

(3)
$$\chi = \frac{1}{4} (a + 2 b) [b]$$
 (4) $b = \frac{a (r - 1)}{3} [r]$

2 等式の変形

♣33 【No.33の後で学習♣補充問題】(4/5)

- ♣補充演習♣【 4 】 ------

次の等式を[]内の文字について解きなさい。

(1)
$$4 \chi - y = -3$$

$$[v]$$
 (2) $-2v+3v=5$

(3)
$$m = \frac{a + b + c}{3}$$

[a] (4)
$$\frac{\chi}{4} + \frac{y}{6} = a$$

(1)
$$4 \chi - y = -3$$
 [y] (2) $-2 \chi + 3 y = 5$ [χ]
(3) $m = \frac{a+b+c}{3}$ [a] (4) $\frac{\chi}{4} + \frac{y}{6} = a$ [y]
(5) $\chi = \frac{1}{5} (2 a - 3 b)$ [a] (6) $y = \frac{a \chi}{3} + 1$ [χ]

[a] (6)
$$y = \frac{a \chi}{2} +$$

$$[\chi]$$

【考え方】*分数の答はすべて約分しておきます。

[答案]

(1)
$$4 \chi - y = -3$$

(1)
$$4 \chi - y = -3$$
 [y] (2) $-2 \chi + 3 y = 5$ [χ]

(3)
$$m = \frac{a+b+c}{3}$$
 [a] (4) $\frac{\chi}{4} + \frac{y}{6} = a$ [y]

$$(4) \quad \frac{\chi}{4} + \frac{y}{6} = 3$$

(5)
$$\chi = \frac{1}{5} (2 a - 3 b) [a]$$
 (6) $y = \frac{a \chi}{3} + 1 [\chi]$

(6)
$$y = \frac{a \chi}{3} + \frac{1}{3}$$

2 等式の変形

♣33」【No.33の後で学習♣補充問題】(5/5)

- ♣補充演習♣【 5 】 ──

次の等式を [] 内の文字について解きなさい。

- (1) S = A (2 + 3 r) [A] (2) $S = \pi \ell + \pi r^2$ [ℓ]

- (3) $\ell = 2(a+b+c)$ [b] (4) 0.5 a(b+c) = d [c]

- (5) $\frac{a}{b} = \frac{c}{d}$ [b] (6) $\frac{3(\chi + y)}{4a} = 6$ [χ]

【考え方】(5) たとえば、2と3の最小公倍数は2×3=6。

同じようにして、 bとdの最小公倍数はb×d=bd つまり、両辺にbとdの最小公倍数のbdをかけて分母を払う。

[答案]

- (1) S = A(2 + 3 r) [A] (2) $S = \pi \ell + \pi r^2$ [ℓ]

(3)
$$\ell = 2(a+b+c)$$
 [b] (4) 0.5 a (b+c) = d [c]

$$(5) \quad \frac{a}{b} = \frac{c}{d}$$

[b] (6)
$$\frac{3(\chi + y)}{4a} = 6$$
 [χ]